## Goals

This fortnight we are going to:


- Review and use the power, chain, product, and quotient rule for differentiation
- Find the derivatives of exponential functions of the forms: $y=e^{x}$ and $y=e^{f(x)}$
- Find the derivatives of logarithmic functions of the forms: $y=\ln (x)$ and $y=\ln [f(x)]$
- Find the derivatives of trigonometric functions: $\sin (x), \cos (x)$ and $\tan (x)$


## Theoretical Components

## Practical Components

Make notes on the following chapters:

## Maths Quest 12 Mathematical Methods

- 7C - The derivative of $x^{n}$
- 7D - The chain rule
- 7E - The derivative of $e^{x}$
- 7F - The derivative of $\ln (x)$
- 7G - The derivatives of $\sin (x), \cos (x)$ and $\tan (x)$
- 7H - The product rule
- 7I - The quotient rule
- 7J - Mixed problems


## Chain Rule proof:

- https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-2-new/ab-diff-2-optional/v/chain-rule-proof


## Implicit Differentiation:

- https://www.khanacademy.org/math/diffe rential-calculus/dc-chain/dc-implicit-diff/v/implicit-differentiation-1


## Do the following questions:

Organise your solutions neatly in your exercise book.

Chapter 7 of Maths Quest 12 Mathematical Methods (pdf - Google Classroom)

- 7C: as many until you feel confident
- 7D: 9-18
- 7E: 5 (3rd column),6-9
- 7F: 7-13
- 7G: 1-3 (as many until you feel confident), 4, 7-10 (as many until you feel confident), 13
- $7 \mathrm{H}: 4$ ( $1^{\text {st }}$ column)
- 7I: 4 ( $1^{\text {st }}$ column), 6-10
- 7J: 3 ( $1^{\text {st }}$ column)


## Portfolio Task

See next page
Start your assignment

Come and see me if you need help using your CAS.
Fun fact: A function that is differentiable must also be continuous. But is the converse true? The answer is no: in 1872, the German mathematician Karl Weierstrass came up with a function that is continuous everywhere, but differentiable nowhere.

## Week 4 and 5 Investigation

Implicit Differentiation: We have only been differentiation curves whose equations has the form $y=f(x)$, where $f(x)$ is a function. But solving an equation for $y$ can sometimes be difficult or impossible, and sometimes the curve may not even be a function. The purpose of this rather more difficult section is to extend differentiation to curves like the circle $x^{2}+y^{2}=25$, which may not be functions, yet are still defined by an algebraic equation in $x$ and $y$.

Differentiating Expressions in $\boldsymbol{x}$ and $\boldsymbol{y}$ : The first step is using the chain, product and quotient rules to differentiate expression in $x$ and $y$ where $x$ and $y$ are related. In this situation, neither $x$ nor $y$ is constant, and in particular $y$ must be regarded as a function of $x$.

Example: Differentiate $x^{2} y$ with respect to $x$.
$\frac{d}{d x}\left(x^{2} y\right)=y \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(y)$
$\frac{d}{d x}\left(x^{2} y\right)=2 x y+x^{2} \frac{d y}{d x}$
Extra support: https://www.youtube.com/watch?v=M0SMSWM2oZA
Question:
Differentiate $x^{3}+x y^{2}=x^{2} y+y^{3}$ with respect to $x$.

