CALCULUS

DERIVATIVE DEFINITION
$\frac{d}{d x} f(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

BASIC PROPERTIES

$[c f(x)]^{\prime}=c\left[f^{\prime}(x)\right]$
$[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$

$$
\begin{gathered}
\frac{d}{d x}(c)=0 \\
\frac{d}{d x}(k x)=k
\end{gathered}
$$

MEAN VALUE THEOREM

If f is differentiable on the interval (a, b) and continuous at the end points there exists $\mathrm{a} c$ in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

POWER RULE

$$
\frac{d}{d x}\left(a x^{n}\right)=n a x^{n-1}
$$

CHAIN RULE

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

PRODUCT RULE

$$
[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

QUOTIENT RULE

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

LIMIT EVALUATION METHOD - FACTOR AND CANCEL

$$
\lim _{x \rightarrow-3} \frac{x^{2}-x-12}{x^{2}+3 x}=\lim _{x \rightarrow-3} \frac{(x+3)(x-4)}{x(x+3)}=\lim _{x \rightarrow-3} \frac{x-4}{x}=\frac{7}{3}
$$

L'HOPITAL'S RULE

if $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} f^{\prime}(x) / g^{\prime}(x)$

A reference sheet for the hawkermaths.com senior maths program

COMMON DERIVATIVES

$$
\begin{aligned}
& \frac{d}{d x}(x)=1 \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cot x \\
& \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
& \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln (a) \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln (x))=\frac{1}{x}, x>0 \\
& \frac{d}{d x}(\ln |x|)=\frac{1}{x} \\
& \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln (a)}
\end{aligned}
$$

MATHS REFERENCE SHEET COLLECTION

Mathematical Methods Specialist Mathematics

CHAIN RULE AND OTHER EXAMPLES

$\frac{d}{d x}\left([f(x)]^{n}\right)=n[f(x)]^{n-1} f^{\prime}(x)$
$\frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{f(x)}$
$\frac{d}{d x}\left(\ln (f(x))=\frac{f^{\prime}(x)}{f(x)}\right.$
$\frac{d}{d x}(\sin [f(x)])=f^{\prime}(x) \cos [f(x)]$
$\frac{d}{d x}(\cos [f(x)])=-f^{\prime}(x) \sin [f(x)]$
$\frac{d}{d x}(\tan [f(x)])=f^{\prime}(x) \sec ^{2}[f(x)]$
$\frac{d}{d x}(\sec [f(x)])=f^{\prime}(x) \sec [f(x)] \tan [f(x)]$
$\frac{d}{d x}\left(\tan ^{-1}[f(x)]\right)=\frac{f^{\prime}(x)}{1+[f(x)]^{2}}$
$\frac{d}{d x}\left(f(x)^{g(x)}\right)=f(x)^{g(x)}\left(\frac{g(x) f^{\prime}(x)}{f(x)}+\ln (f(x)) g^{\prime}(x)\right)$

PROPERTIES OF LIMITS

$$
\begin{gathered}
\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x) \\
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \text { if } \lim _{x \rightarrow a} g(x) \neq 0 \\
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}
\end{gathered}
$$

LIMIT EVALUATIONS AT $+-\infty$

$$
\begin{gathered}
\lim _{x \rightarrow \infty} e^{x}=\infty \text { and } \lim _{x \rightarrow-\infty} e^{x}=0 \\
\lim _{x \rightarrow \infty} \ln x=\infty \text { and } \lim _{x \rightarrow-\infty} \ln x=-\infty \\
\text { If } r>0 \text { then } \lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0
\end{gathered}
$$

If $r>0 \& x^{r}$ is real for $x<0$ then $\lim _{x \rightarrow-\infty} \frac{\mathrm{c}}{x^{r}}=0$

$$
\lim _{x \rightarrow \pm \infty} x^{r}=\infty \text { for even } r
$$

$\lim _{x \rightarrow \infty} x^{r}=\infty \& \lim _{x \rightarrow-\infty} x^{r}=-\infty$ for odd r

