

Goals

This fortnight we are going to:

- Understand the concepts of relations and functions
- Understand the inter-connectivity of the written, graphical and algebraic forms of relation
- Develop mathematical models with various functions
- Use algebraic methods and graphing software to identify the key features of linear functions
- Functions and relations
- Odd and even functions
- Domain and range
- Further develop curve recognition, domain and range, using technology to sketch functions

Theoretical components

Resources

Make notes on the following chapters and websites:
Chapter 1 and 4 of Maths Quest 11 Mathematical Methods (pdf - Google Classroom)

- http://www.mathsisfun.com/algebra/linear-equations.html
- http://www.mathsisfun.com/gradient.html
- http://www.mathsisfun.com/data/straight line graph.html
- http://www.mathsisfun.com/algebra/line-equation-pointslope. htm
- https://www.mathsisfun.com/sets/function.html
- https://www.mathsisfun.com/sets/domain-rangecodomain.html

Knowledge Checklist:

- Know about gradients
- Be able to sketch linear functions quickly, easily and with accuracy
- Find the equation of a line given certain information
- Use modelling techniques -applications using linear functions
- Define the domain and range of a function
- Use the vertical line test for functions

Formulas

- General form for linear equations

$$
y=m x+c
$$

where m is the gradient and c is the y -intercept (when $\mathrm{x}=0$)

- Gradient

$$
m=\frac{\text { rise }}{\text { run }} \quad \text { or } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Perpendicular lines

$$
m_{1} \times m_{2}=-1
$$

- Parallel lines

$$
m_{1}=m_{2}
$$

- Finding the equation of a straight line

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Practical Components

Make notes on the following chapters and websites:

Maths Quest 11 Mathematical Methods

- 1A Solving linear equations and inequations
- 1B Rearrangement and substitution
- 1C Gradient of a straight line
- 1D Sketching linear functions
- 1F Finding the equation of a straight line
- 1G Distance between two points and midpoint of a segment
- 1 H Linear modelling
- 4C Domain and range
- 4D Types of relations (including functions)

Do the following questions:

Organise your solutions neatly in your exercise book.

- $1 \mathrm{~A}: 2 \mathrm{a}, \mathrm{h} ; 3$
- 1B: 3, 5
- 1C: $1 \mathrm{a}, 2 \mathrm{c}, 7,8$
- 1D: $8 \mathrm{e}, 9 \mathrm{c}, \mathrm{f} ; 14,15$
- 1F: 5a, b; 8, 10, 12-15
- 1G: 1,5
- $1 \mathrm{H}:$ All even numbered questions
- 4C: 1b, g; 2d, h; 3c, 4, 7, 8, 10
- 4D: 1a, d, g, j; 2a, d, g, j; 4

Investigation

See the next page.

Week 7 and 8 Investigation

Part A

Here are the equations of 12 straight lines.

$y=4 x+4$	$4 y=x+3$	$y=8 x-3$	$y+4 x+6=0$
$3 y=2 x-8$	$y+6 x=11$	$y+8 x=6$	$2 y+8=3 x$
$2 y+x=4$	$2 y=8 x+3$	$y=6 x-4$	$y+x+8=0$

1. Rewrite each equation in the form $y=m x+c$

2. These 12 straight lines can be divided up into pairs/group, each pair matching one of the following descriptions. Sort them into the correct pairs and complete the final description.

- These lines are parallel.
- These lines are perpendicular.
- These lines have the same y-intercept.
- These lines have the same x-intercept.
- These lines both go through the point $(1,5)$.
- These lines ...

Part B

Read the following on Odd and Even Functions and complete the questions on the following page.

Even and Odd Functions

A Function can be classified as Even, Odd or Neither. This classification can be determined graphically or algebraically.

Graphical Interpretation -

Even Functions:

Have a graph that is symmetric with respect to the Y -Axis.

Odd Functions:

Have a graph that is symmetric with respect to the Origin.

Origin - If you spin the picture upside down about the Origin, the graph looks the same!

Algebraic Test - \quad Substitute $(-x)$ in for x everywhere in the function and analyze the results of $f(-x)$, by comparing it to the original function $f(x)$.

Even Function: $\quad \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is Even when, for each x in the domain of $f(x), f(-x)=f(x)$

Odd Function: $\quad \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is Odd when, for each x in the domain of $f(x), f(-x)=-f(x)$

Examples:

a. $f(x)=x^{2}+4$
$f(-x)=(-x)^{2}+4$
b. $f(x)=x^{3}-2 x$
$f(-x)=(-x)^{3}-2(-x)$
$f(-x)=x^{2}+4$
$f(-x)=-x^{3}+2 x$
c. $f(x)=x^{2}-3 x+4$
$f(x)=(-x)^{2}-3(-x)+4$
$f(-x)=f(x)$
$f(-x)=-\left(x^{3}-2 x\right)=-f(x)$
$f(-x)=x^{2}+3 x+4$
\uparrow
Even Function!
$f(-x) \neq f(x) \neq-f(x)$

Even and Odd Functions - Practice Problems

A. Graphically determine whether the following functions are Even, Odd, or Neither
1.

2.

3.

B. Algebraically determine whether the following functions are Even, Odd, or Neither

1. $f(x)=x^{3}-x^{2}+4 x+2$
2. $f(x)=-x^{2}+10$
3. $f(x)=x^{3}+4 x$
4. $f(x)=-x^{3}+5 x-2$
5. $f(x)=\sqrt{x^{4}-x^{2}}+4$
6. $f(x)=|x+4|$
7. $f(x)=|x|+4$
8. $f(x)=x^{4}-2 x^{2}+4$
9. $f(x)=\sqrt[3]{x}$
10. $f(x)=x \sqrt{x^{2}-1}$
