HAWKER COLLEGE
Engage | Inspire | Achieve

Goals

By the end of this week, you will:

- Further develop mathematical models with quadratic functions
- Use algebraic methods and graphing software to identify the key features of linear and quadratic functions
- Develop quadratic skills (factorising, completing the square, solving quadratic equations)

Exam: Week 10, $4^{\text {th }}$ April at $11: 15$ am to $1: 15 \mathrm{pm}$ in the Gym.

Theoretical components

You will need to have a good working knowledge of domain and range, functions and relations for the assignment.

Quadratics:
You need to know about dilation, vertical translation, horizontal translation, vertex, axis of symmetry, reflection, roots, and intercepts
Forms: Base form $y=x^{2}$
General form $y=a x^{2}+b x+c$
Vertex (h, k) form $y=a(x-h)^{2}+k$
Fully factorised form $y=(a x-m)(f x-n)$

Online reading

Quadratics:

- https://www.mathsisfun.com/algebra/quadra tic-equation-real-world.html

Practical Components

Resources:

Make notes on the following chapters and websites:

- 2C Factorising quadratic expressions
- 2D Factorising by completing the square
- 2E Solving quadratic equations - Null Factor Law

Do the following questions:

Organise your solutions neatly in your exercise book.
Chapter 2 of Maths Quest 11 Mathematical Methods (pdf - Google Classroom)

- 2C: 2 (first column), 7 (second column), 9
- 2D: 1i, 2i, 7
- 2E: 2 (first column), 3 (first column), 8, 10, 12

Investigation

Prepare a two-sided handwritten A4 summary sheet.

Catch up on any work you have missed.

Knowledge Checklist:

Algebra:

- Expanding
- Simplifying
- Collecting like terms
- Rearranging
- Algebraic fractions
- Solving equations and simultaneous equations

Counting and Probability:

- Understand the addition and multiplication principles for counting
- Compute number of possible arrangements using permutation
- Develop an understanding of factorial notation and apply it to calculating permutations
- Use ${ }^{n} P_{r}$ to count number of possible arrangements
- Use combinations to count selections of objects where order is not important; use the ${ }^{n} \mathrm{C}_{r}$ notations to represent selections where order is not important
- use calculator to compute ${ }^{n} C_{r}$ for a given n and a given r
- Investigate patterns in Pascal's triangle and the relationship to combinations, establish counting principles and use them to solve simple problems involving numerical values for n and r
- Apply basic probability rules
- Determine the probability of simple and compound events
- Use tree diagrams, Venn diagrams and Karnaugh maps to determine the sample space and probability of compound events
- Use addition principle to compute probabilities of mutually exclusive (and nonmutually exclusive or inclusive) events
- Understand and use the definition of conditional probability
- Use the relative frequency approach to assigning probability to find the conditional probability of an event from a two-way table
- Use the multiplication rule to find the probability of the intersection of two events
- Use the multiplication rule to find the probability of the intersection of more than two events
- Determine if two events are independent

Linear Modelling:

- Linear functions and modelling
- Know about gradient and features of linear graphs including the y-intercept and the x intercept.
- Find the intersection of two lines
- Describing functions and relations

