Learning Brief SMM1: Counting and Probability

By the end of this week, you should be able to:

- Use ${ }^{n} \mathrm{P}_{\mathrm{r}}$ to count number of possible arrangements (permutations)
- Compute number of ways of arranging n objects which include p identical objects of one type, q identical objects of another type, r identical objects of yet another type...
- Compute number of arrangements when n objects divided into m groups
- Compute number of arrangements when distinguishable objects are arranged in a circle

Theoretical comoonents

STEP 1

You will require Chapter 12 of Maths Quest 11
Mathematical Methods (pdf - Google Classroom)
\checkmark Read through Section 12B on ${ }^{n} P_{r}$ Permutations. Study examples 5-7
\checkmark Read through Section 12D on. Study and make notes on Examples 11-14.
\checkmark Read through Section 12E on Permutations with restrictions. Study examples 15-18.
\checkmark Read through Section 12F on Arrangement in a circle. Study examples 19-21.

Make your notes on the following key concepts:

- Permutations with restrictions, repetitions
- Arrangements in a circle

ABCD	ABDC	ACBD	ACDB	ADBC	ADCB
BACD	BADC	BCAD	BCDA	BDAC	BDCA
CABD	CADB	CBAD	CBDA	CDAB	CDBA
DABC	DACB	DBAC	DBCA	DCAB	DCBA

Permutations:
http://www.tutors4you.com/circularpermutations. htm

Practical Components

STEP 2

You will require Chapter 12 of Maths Quest 11 Mathematical Methods (pdf - Google Classroom) Do the following questions. Organise your solutions neatly in your exercise book:

EX 12D: ALL even numbered questions.
EX 12E: ALL odd numbered questions.
EX 12F: ALL odd numbered questions.
Complete more of these questions if you need.

Investigation

STEP 3

1. Prove:

$$
{ }^{n+1} P_{r}={ }^{n} P_{r}+r .{ }^{n} P_{r-1}
$$

2. In how many ways can four men and four women be seated alternatively:
a. in a row,
b. at a round table?
3. How many arrangements of the letters in the word TOMATO are there, if the letters O are to be separated?

Continue with these questions:

See handout (online pdf) - Set Notation
Exercise 2A and 2B

Investigation

STEP 3

1. Prove:

$$
{ }^{n+1} P_{r}={ }^{n} P_{r}+r .^{n} P_{r-1}
$$

2. Four men and four women are to be seated alternatively:
a. in a row,
b. at a round table.

In how many ways can this be done?
3. How many arrangements of the letters in the word TOMATO are there, if the letters O are to be separated?

Extension Question:

In how many ways can four people be accommodated in a certain hotel if there are four rooms available?

