The second derivative and applications of differentiation:

- use the increments formula: $\delta y \cong \frac{d y}{d x} \times \delta x$ to estimate the change in the dependent variable y resulting from changes in the independent variable x

Goals

- understand the concept of the second derivative as the rate of change of the first derivative function
- recognise acceleration as the second derivative of position with respect to time
- understand the concepts of concavity and points of inflection and their relationship with the second derivative
- understand and use the second derivative test for finding local maxima and minima
- sketch the graph of a function using first and second derivatives to locate stationary points and points of inflection
- solve optimisation problems from a wide variety of fields using first and second derivatives.

Theoretical components

Resources:
Maths Quest Year 12 Chapter 7 and Maths Quest Specialist Chapter 5 (pdf on Google Drive)

Second - Derivative Test

Let $f^{\prime}(\mathrm{c})=0$ and let f " exist on an open interval containing c.

1. If $f^{\prime \prime}(c)>0$, then $f(c)$ is a relative minimum.
2. If $f^{\prime \prime}(\mathrm{c})<0$, then $\mathrm{f}(\mathrm{c})$ is a relative maximum.
3. If $\mathrm{f}^{\prime \prime}(\mathrm{c})=0$ then the test fails. Use the First Derivative Test.

Practical components

STEP 2

Ex 5B Second derivatives

- Qs 1 ($1^{\text {st }}$ and $3^{\text {rd }}$ column), 3 (c, d, e, k), 5, 6, 9, 11

Ex 5C Analysing the behaviour of functions using the second derivative

- Qs 1 and $2(a, d, g, j), 3-5,10-13$

Investigation

STEP 3

See below!

Don't forget to do the Cambridge Task!

Remember to check-in with Serene each lesson and get your named marked off.

hawker college
 Engage | Inspire | Achieve

Investigation Week 7

1. Develop a three-step Chain Rule for the derivative $\frac{d y}{d x}$, where y is a function of u, and u is a function of v, and v is a function of x.
2. Hence differentiate $y=\frac{1}{1+\sqrt{1-x^{2}}}$ using your three-step chain rule from part (a).
