Week 5 & 6 Term 1 2024



# Goals

| Coffee Calculus 101 |
|---------------------|
| $f(x) = \bigcirc$   |
| f'(x) =             |
| f''(x) =            |

**HAWKER** COLLEGE Engage | Inspire | Achieve

## MM3 Further differentiation and applications

By the end of this fortnight, you should be able to:

- establish the formulas  $\frac{d}{dx}(\sin x) = \cos x$ , and  $\frac{d}{dx}(\cos x) = -\sin x$ by numerical estimations of the limits and informal proofs based on geometric constructions
- use trigonometric functions and their derivatives to solve practical problems.
- understand and use the product and quotient rules
- understand the notion of composition of functions and use the chain rule for determining the derivatives of composite functions
- apply the product, quotient and chain rule to differentiate functions such as  $xe^x$ ,  $\tan x$ ,  $\frac{1}{x^n}$ ,  $x \sin x$ ,  $e^{-x} \sin x$  and f(ax + b).

#### Derivative **Common Functions** Function 0 Constant с Line 1 х ax а x<sup>2</sup> 2x Square Square Root √x $(\frac{1}{2})X^{-\frac{1}{2}}$ Exponential e× e× a× ln(a) a<sup>x</sup> Logarithms 1/x ln(x) $log_a(x)$ 1 / (x ln(a)) Trigonometry (x is in radians) sin(x) cos(x)-sin(x)cos(x) $sec^{2}(x)$ tan(x) Inverse Trigonometry $sin^{-1}(x)$ $1/\sqrt{(1-x^2)}$ $-1/\sqrt{(1-x^2)}$ $\cos^{-1}(x)$ $tan^{-1}(x)$ $1/(1+x^2)$ Rules Function Derivative Multiplication by constant cf cf'xn nxn-1 Power Rule Sum Rule f + g f' + g' Difference Rule f - g f' - g' Product Rule fq' + f'qfg f' g – g' f **Quotient Rule** f/g g<sup>2</sup> 1/f Reciprocal Rule $-f'/f^2$ dy du Chain Rule (using $\frac{d}{dx}$ ) dy dx du dx

# Theoretical Components

## Practical Components

**Complete the following questions.** Organise your solutions neatly in your exercise book.

You will require Chapter 7 of Maths Quest Methods (pdf – Google Classroom).

## Ex 7J Mixed problems on differentiation

Qs 1, 2 and 3 (all non-log problems)

## **Resources:**

• Year 12 Maths Quest Methods Chapter 7

# Investigation

See next page.



Remember to check-in with Serene each lesson and get your name marked off.

Our in-class problem solving task will be during your double in Week 6.



### MM3 Week 5/6 Investigation

Review and complete the following rules to do with the exact values of trigonometric functions at values of  $\theta$ . Some are already filled in for you. Assume all values of  $\theta$  are in radians.

Remember:  $tan(\theta) = sin(\theta)/cos(\theta)$ 





| θ value->                                                        | 0/2π | $\frac{\pi}{6}$  | $\frac{\pi}{4}$       | $\frac{\pi}{3}$      | $\frac{\pi}{2}$  | $\frac{2\pi}{3}$      | $\frac{3\pi}{4}$      | $\frac{5\pi}{6}$      |
|------------------------------------------------------------------|------|------------------|-----------------------|----------------------|------------------|-----------------------|-----------------------|-----------------------|
| Trig<br>Function $\downarrow$                                    |      |                  |                       |                      |                  |                       |                       |                       |
| $sin(\theta)$                                                    | 0    | $\frac{1}{2}$    |                       |                      | 1                | $\frac{\sqrt{3}}{2}$  |                       |                       |
| $\cos(\theta)$                                                   | 1    |                  | $\frac{1}{\sqrt{2}}$  |                      | 0                |                       | $\frac{-1}{\sqrt{2}}$ |                       |
| $tan(\theta)$                                                    | 0    |                  |                       | $\frac{\sqrt{3}}{1}$ | UNDEFINED        |                       |                       | $\frac{-1}{\sqrt{3}}$ |
| $\theta \ value \rightarrow$<br>Trig<br>Function<br>$\downarrow$ | π    | $\frac{7\pi}{6}$ | $\frac{5\pi}{4}$      | $\frac{4\pi}{3}$     | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$      | $\frac{7\pi}{4}$      | $\frac{11\pi}{6}$     |
| $sin(\theta)$                                                    | 0    | $\frac{-1}{2}$   |                       |                      | -1               | $\frac{-\sqrt{3}}{2}$ |                       |                       |
| $\cos(\theta)$                                                   | -1   |                  | $\frac{-1}{\sqrt{2}}$ |                      | 0                |                       | $\frac{1}{\sqrt{2}}$  |                       |
| $tan(\theta)$                                                    | 0    |                  |                       | $\frac{\sqrt{3}}{1}$ | UNDEFINED        |                       |                       | $\frac{-1}{\sqrt{3}}$ |

#### Now, answer the following question algebraically.

f(x) = sin(x) + cos(x). Find a value of x where f(x) and f'(x) = 1.