

Learning Brief MM3: Further differentiation and applications

By the end of this week, you should be able to:

- learn and use the chain rule for differentiation
- find the derivatives of exponential functions of the forms: $y = e^x$, and $y = e^{f(x)}$
- estimate the limit of $\frac{a^{h}-1}{h}$ as $h \to 0$ using technology, for various values of a > 0
- recognise that *e* is the unique number *a* for which the above limit is
 1
- establish and use the formula $\frac{d}{dx}(e^x) = e^x$
- use exponential functions and their derivatives to solve practical problems.

Theoretical Components

STEP 1 Resources: Maths Quest Year 12 Chapter 7 **Chain Rule Proof**

Goals

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$

https://www.khanacademy.org/math/apcalculus-ab/product-quotient-chain-rulesab/chain-rule-proof-ab/v/chain-rule-proof

What is base e?

Read through to get an insight on the number 'e':

https://www.investopedia.com/terms/e/eulersconstant.asp

https://www.youtube.com/watch?v=m2MIpDrF7 Es

https://www.mathsisfun.com/numbers/e-eulersnumber.html

http://www.mathopolis.com/questions/q.php?id= 2011&site=1&ref=/numbers/e-eulersnumber.html&qs=2011_2012_2013

Derivative of $y = e^x$, and $y = e^{f(x)}$ from first principles See the following page

Practical Components

STEP 2

Read and make notes examples 13, 14 and 15 from Chapter 7

Read and make notes for examples 16 - 19 from Chapter 7

Ex 7D The Chain Rule

Q's 1, 2, 4, 5, 6, 7 (b,d,f,h), 8, 10 (c,d), 13

Ex 7E The Derivative of e^x and $e^{f(x)}$

Q's 1 (a,d,g), 2 (b,e,h,k), 3, 4 (a,d,g), 5 (c,f,i,l), 6, 7, 8, 9

Investigation

STEP 3

See below. Be sure to show your results to Serene.

Complete the Cambridge Task!

Further Notes:

Chain rule

- 1. A composite function is a function composed of two (or more) functions.
- 2. Composite functions can be differentiated using the chain rule, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$.
- 3. A short way of applying the chain rule is: If $f(x) = [g(x)]^n$ then $f'(x) = n[g(x)]^{n-1} \times g'(x)$.

The derivative of e^x

1. If $f(x) = e^x$, $f'(x) = e^x$. 3. If $f(x) = ae^{kx+c}$, $f'(x) = ake^{kx+c}$. 4. If $f(x) = ae^{g(x)}$, $f'(x) = g'(x) \times ae^{g(x)}$.

Derivative of $f(x) = e^x$ from first principles:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, h \neq 0$$
$$= \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$
$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$
$$= \lim_{h \to 0} \frac{e^x (e^h - 1)}{h}$$
$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$

Note that $\lim_{h \to 0} \frac{e^h - 1}{h}$ can be deduced by using a calculator and substituting values of *h* close to zero.

h	$\frac{e^h-1}{h}$	That is, $\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$ Therefore, $f'(x) = e^x \times 1$ $= e^x$
0.01	1.0050	
0.0001	1.000 05	
0.000001	1.000000	If $f(x) = e^x$ then $f'(x) = e^x$.

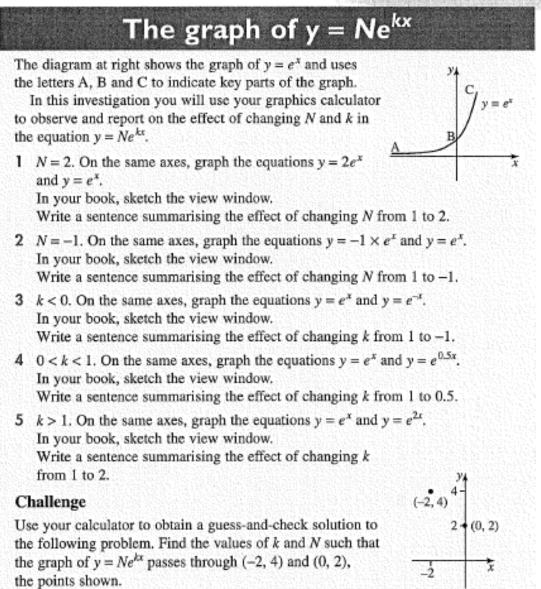
Note: ex is the only function which has itself as a derivative.

MM3 Week 2 Investigation

Name:

Please submit your response for checking 😌

You can use <u>https://www.desmos.com/calculator</u> or CAS calculator for your graphs.



Write down your guesses and the adjustments you made to find the equation of the challenge question.

Complete the challenge algebraically as well.

