Learning Brief MM3:

Further differentiation and applications

Goals

By the end of this week, you should be able to:

- learn and use the chain rule for differentiation
- find the derivatives of exponential functions of the forms:

$$
y=e^{\mathrm{x}}, \text { and } y=e^{f(x)}
$$

- estimate the limit of $\frac{a^{h}-1}{h}$ as $h \rightarrow 0$ using technology, for various values of $a>0$
- recognise that e is the unique number a for which the above limit is 1
- establish and use the formula $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- use exponential functions and their derivatives to solve practical problems.

Theoretical components

STEP 1

Resources:

Maths Quest Year 12 Chapter 7
Chain Rule Proof

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

https://www.khanacademy.org/math/ap-calculus-ab/product-quotient-chain-rules-ab/chain-rule-proof-ab/v/chain-rule-proof

What is base e?

Read through to get an insight on the number 'e':
https://www.investopedia.com/terms/e/eulersconstant.asp
https://www.youtube.com/watch?v=m2M1pDrF7 Es
https://www.mathsisfun.com/numbers/e-eulersnumber.html
http://www.mathopolis.com/questions/q.php?id= 2011\&site=1\&ref=/numbers/e-eulersnumber.html\&qs=2011 20122013

Derivative of $y=e^{\mathrm{x}}$, and $y=e^{\mathrm{f}(\mathrm{x})}$ from first principles
See the following page

Practical components

STEP 2

Read and make notes examples 13, 14 and 15 from Chapter 7

Read and make notes for examples 16-19 from Chapter 7

Ex 7D The Chain Rule

Q's 1, 2, 4, 5, 6, 7 (b,d,f,h), 8, 10 (c,d), 13

Ex 7E The Derivative of e^{x} and $e^{f(x)}$
Q's 1 (a,d,g), 2 (b,e,h,k), 3, 4 (a,d,g), 5 (c,f,i,l), 6, 7, 8, 9

Investigation

STEP 3

See below. Be sure to show your results to Serene.

Further Notes:

Chain rule

1. A composite function is a function composed of two (or more) functions.
2. Composite functions can be differentiated using the chain rule, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$
3. A short way of applying the chain rule is:

$$
\text { If } f(x)=[g(x)]^{n} \quad \text { then } f^{\prime}(x)=n[g(x)]^{n-1} \times g^{\prime}(x) \text {. }
$$

The derivative of $\boldsymbol{e}^{\boldsymbol{x}}$

1. If $f(x)=e^{x}, f^{\prime}(x)=e^{x}$.
2. If $f(x)=e^{k x}, f^{\prime}(x)=k e^{k x}$.
3. If $f(x)=a e^{k x+c}, f^{\prime}(x)=a k e^{k x+c}$.
4. If $f(x)=a e^{g(x)}, f^{\prime}(x)=g^{\prime}(x) \times a e^{g(x)}$.

Derivative of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{\boldsymbol{x}}$ from first principles:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, h \neq 0 \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
\end{aligned}
$$

Note that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}$ can be deduced by using a calculator and substituting values of h close to zero.

\boldsymbol{h}	$\frac{e^{\boldsymbol{h}}-\mathbf{1}}{\boldsymbol{h}}$
0.01	1.0050
0.0001	1.00005
0.000001	1.000000

That is, $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
Therefore, $f^{\prime}(x)=e^{x} \times 1$

$$
=e^{x}
$$

If $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$.
Note: e^{x} is the only function which has itself as a derivative.

Learning Brief MM3:
 Further differentiation and applications

Name:
Please submit your response for checking ())
You can use https://www.desmos.com/calculator or CAS calculator for your graphs.

The graph of $\mathrm{y}=\mathrm{Ne}^{k x}$

The diagram at right shows the graph of $y=e^{x}$ and uses the letters A, B and C to indicate key parts of the graph.

In this investigation you will use your graphics calculator to observe and report on the effect of changing N and k in the equation $y=N e^{k x}$.
$1 N=2$. On the same axes, graph the equations $y=2 e^{x}$ and $y=e^{x}$.

In your book, sketch the view window.
Write a sentence summarising the effect of changing N from 1 to 2 .
$2 N=-1$. On the same axes, graph the equations $y=-1 \times e^{x}$ and $y=e^{x}$.
In your book, sketch the view window.
Write a sentence summarising the effect of changing N from 1 to -1 .
$3 k<0$. On the same axes, graph the equations $y=e^{x}$ and $y=e^{-x}$.
In your book, sketch the view window.
Write a sentence summarising the effect of changing k from 1 to -1 .
$40<k<1$. On the same axes, graph the equations $y=e^{x}$ and $y=e^{0.5 x}$.
In your book, sketch the view window.
Write a sentence summarising the effect of changing k from 1 to 0.5 .
$5 k>1$. On the same axes, graph the equations $y=e^{x}$ and $y=e^{2 x}$.
In your book, sketch the view window.
Write a sentence summarising the effect of changing k from 1 to 2 .

Challenge

Use your calculator to obtain a guess-and-check solution to the following problem. Find the values of k and N such that the graph of $y=N e^{k x}$ passes through $(-2,4)$ and $(0,2)$, the points shown.

Write down your guesses and the adjustments you made to find the equation of the challenge question.

Complete the challenge algebraically as well.

