Goals

By the end of this fortnight, you should be able to:

- distinguish between discrete and continuous random variables (CRV)
- understand probability density functions and cumulative distributions for continuous random variables
- compute the central tendency and variability (spread) of continuous distributions

Theoretical components

Resources:

- Quest Mathematical Methods 12, Chapter 12 (see pdf on Google Drive)

1. $f(x) \geq 0, \quad$ for all x
2. $\int_{-\infty}^{\infty} f(x) d x=1$
3. $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$

For a continuous random variable X with probability density function f

- the mean or expected value of X is given by $\mu=\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x$
- the expected value of $g(X)$ is given by $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x$
- the median of X is the value m such that $\int_{-\infty}^{m} f(x) d x=0.5$
- The variance of a continuous random variable X with probability density function f is defined by

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =\mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{aligned}
$$

provided the integral exists. To calculate the variance, use

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}
$$

- The standard deviation of X is defined by

$$
\sigma=\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}
$$

- The interquartile range of X is

$$
\mathrm{IQR}=b-a
$$

where a and b are such that

$$
\int_{-\infty}^{a} f(x) d x=0.25 \quad \text { and } \quad \int_{-\infty}^{b} f(x) d x=0.75
$$

and where f is the probability density function of X.

Khan Academy quiz:
https://www.khanacademy.org/math/statistics-probability/random-variables-stats-library/random-variables-continuous/e/probability-density-curves

Practical Components

Do the following questions from Chapter 12:
Continuous random variables and their probability distributions (pdf -GC). Organise your solutions neatly in your exercise book.

Ex 12A Continuous random variables

- Qs 1 a, d, g; $2 \mathrm{a}, \mathrm{g} ; 4 ; 9$

Ex 12B Using a probability density function to find probabilities of continuous random variables

- Qs $1 ; 3 ; 5 ; 6 ; 9 ; 12 ; 17$ (Use technology to find the integral for this question)

Ex 12C Measures of central tendency and spread - Qs 1;3;5; 9

Investigation

X is a random variable denoting the number of minutes in excess of two hours which a person takes to travel from one town to another. The probability density function is defined by:

$$
f(x)=\left\{\begin{array}{cc}
k(10+x), & -10 \leq x \leq 0 \\
k(10-x), & 0 \leq x \leq 10 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Find the value of k
(b) Sketch the graph of f
(c) Find the probability that:
(i) X is less than 5
(ii) X is less than 0 , given that X is less than 5
(iii) $-2 \leq X<3$

Probability revision

- Outcomes are results of experiments.
- The set of all possible outcomes of an experiment is called the sample space and is denoted by ε, and each possible outcome is called a sample point.
- A subset of the sample space is known as an event.
- The union (symbol \cup) of two events A and B implies a combined event, that is, either event A or event B or both occurring. Common elements are written only once.
- The intersection (symbol \cap) of two events A and B is represented by the common sample points of the two events.
- Venn diagrams involve drawing a rectangle that represents the sample space and a series of circles that represent subsets of the sample space. They provide a visual representation of the information at hand and clearly display the relationships between sets.
- The probability of an event occurring is defined by the rule:

$$
\operatorname{Pr}(A)=\frac{\text { number of favourable outcomes }}{\text { total number of possible outcomes }} .
$$

- The probability of an event occurring lies within the restricted interval $0 \leq \operatorname{Pr}(A) \leq 1$.
- The individual probabilities of a particular experiment will sum to 1 ; that is, $\Sigma p(x)=1$.
- Conditional probability is defined by the rule $\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$ where $\operatorname{Pr}(B) \neq 0$.
- This can be transposed to $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B)$.

Discrete and Continuous Random Variables - Revisited

\qquad
Slide 48

- A discrete random variable:
- counts occurrences
- has a countable number of possible values
- has discrete jumps between successive values
- has measurable probability associated with individual values
- probability is height

- A continuous random variable:
- measures (e.g.: height, weight, speed, value, duration, length)
- has an uncountably infinite number of possible values
- moves continuously from value to value
- has no measurable probability associated with individual values

