

By the end of this brief, you should be able to:

- Review the chain rule for differentiation of exponential functions of the forms: $y=e^{x}$, and $y=e^{f(x)}$
- Find the derivatives logarithmic functions of the forms;
$y=\ln (x)$ and $y=\ln [f(x)]$.
- Use derivatives to solve practical problems
- Use further applications of differentiation
- Integrate to give log functions
- Find an exact area under a given curve using definite integrals
- Use further applications of integration
- Review for Week 8/9 test

Theoretical components

Read and make notes on examples 4, 5 and 8 from Chapter 9 (pdf - Google Classroom)

Videos

Integral of natural log
https://youtu.be/JMaKtEC2bbY
Area under $\ln (x)$ curve (using inverse function) https://www.youtube.com/watch?v=rjKnN6wJSuc

Summary of integrals

$f(x)$	$\int f(x) d x$
a	$\frac{a x+c}{}$
$a x^{n}$	$\frac{a x^{n+1}}{n+1}+c$
$(a x+b)^{n}$	$\frac{\left(a x+()^{n+1}\right.}{a(n+1)}+c$
$\frac{1}{x}$	$\log (x \mid+c$
$\frac{1}{a x+b}$	$\frac{1}{a} \log \|a x+b\|+c$
e^{x}	e^{x+c}
$e^{k x}$	$\frac{1}{e^{e x}+c}$
$\sin (a x)$	$\frac{-1}{a} \cos (a x)+c$
$\cos (a x)$	$\frac{1}{a} \sin (a x)+c$

Practical Components

Do the following questions from Chapter 9:
Logarithmic functions using calculus (pdf - GC).
Organise your solutions neatly in your exercise book.

Ex 9.3 The antiderivative of $f(x)=\frac{1}{x}$
Qs 1, 3, 5, 7, 10, 12, 19

Ex 9.4 Applications

Qs $1,3,6,9,10,11$ (do more questions if you like)

The fundamental theorem of calculus is $\int_{a}^{b} f(x) \mathrm{d} x=[F(x)]_{a}^{b}$ $=F(b)-F(a)$.
where $F(x)$ is an antiderivative of $f(x)$.

Investigation

See the following pages.

Ensure you have completed all classwork, investigations and Mathspace tasks.

Check out the chapter reviews for revision.

Prepare a summary sheet for use in the test (two-sided hand-written A4 page).

Knowledge Checklist:

Logarithmic functions

- Index laws
- Logarithmic laws
- Exponential equations
- Logarithmic equations using any base
- Exponential equations (base e)
- Equations with natural (base e) logarithms
- Inverses
- Exponential and logarithmic modelling

Calculus of log functions

- The derivative of $f(x)=\log _{e}(x)$
- The anti-derivative of $f(x)=\frac{1}{x}$
- Applications

Bivariate data

- Dependent and independent variables
- Back-to-back stem plots
- Parallel boxplots
- Scatterplots
- Correlation coefficient
- Coefficient of determination

MM4 Investigation Week 7 and 8

If $y=\ln (x)$, explain how you would find the area under the curve from $x=1$ to $x=3$. Find the area. Give your answer in exact form and to 4 decimal places.

