Engage | Inspire | Achieve
Goals
Topic 1: Integration and applications of integration


## This week:

Applications of integral calculus:

- use and apply the probability density function, $f(t)=\lambda e^{-\lambda t}$ for $t \geq 0$, of the exponential random variable with parameter $\lambda>0$, and use the exponential random variables and associated probabilities and quantiles to model data and solve practical problems.


## Theoretical components

## Practical components

Read the notes and study the examples.
(Classroom/ABOUT/Resources/WK06)
Further notes/examples:
https://tutorial.math.lamar.edu/classes/calcii/proba bility.aspx
https://amsi.org.au/ESA Senior Years/PDF/ExpoNor mDist4f.pdf

Calculator Applet:
https://homepage.divms.uiowa.edu/~mbognar/appl ets/exp-like.html

Key Points:

- The exponential distribution is often concerned with the amount of time until some specific event occurs.
- The random variable for the exponential distribution is continuous and often measures a passage of time.
- The exponential distribution is often used to model the longevity of an electrical or mechanical device.
- The memoryless property says that knowledge of what has occurred in the past has no effect on future probabilities.


## Exercises:

Attempt all questions from here:

- See WK06 folder in Google Drive. Attempt all the questions.


## Investigation

None this week.

