Goals

This week we are:

- Finding the gradient function (derivative) of polynomial functions using rules
- Learn and use the chain, product and quotient rule for differentiation

Theoretical components

Make notes on the following chapters and website:

Maths Quest 11 Mathematical Methods

- 9D - Finding derivatives by rule

Maths Quest 12 Mathematical Methods

- 7D - The chain rule
- 7H - The product rule
- 7I-The quotient rule
- 7E - The derivative of e^{x}
- 7F - The derivative of $\log _{e} x$
- 7G - The derivative of $\sin x, \cos x$ and $\tan x$

Knowledge Checklist:

- finding gradient functions by using the rule
- finding derivatives by power, chain, product and quotient rule

Practical Components

Do the following questions:

Organise your solutions neatly in your exercise book.

You will require Chapter 9 of Maths Quest 11 Mathematical Methods (pdf - Google Classroom)

- 9D: all

You will require Chapter 7 of Maths Quest 12 Mathematical Methods (pdf - Google Classroom)

- 7D: 1, 2, 4, 5, 6, 7b, 7d, 7f, 7h, 8, 10c, 10d, 13
- 7H: 1, 3, 4c, 4d, 4r, 8
- 7I: 1-2, 4a, 4d, 4I, 5-7
- 7E: 1,gh f. $2 \mathrm{j}, \mathrm{k}, \mathrm{I} 3,4,5 \mathrm{~m}$ n 6,7,8,9
- 7F: 7 to 13
- $7 \mathrm{G}: 10$ to 13

Investigation

See the following page We define the differentiability class of a function as the highest order of derivative that exists and is continuous. Functions that have derivatives of all orders are known as C -infinity functions.

Week 11 Investigation

The lower arch of the Sydney Harbour Bridge can be modelled using the equation:

$$
y=-0.00188(x-251.5)^{2}+118
$$

Assuming Sydney Tower is 1 km from the far side of the bridge, prove that Sydney Tower will first be visible from the arch at $x=207.81 \mathrm{~m}$.

The point of Sydney Tower is 327 m above sea level.
Use the calculus techniques you have learnt to complete this task.

