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By inspection, the optimum solution to the TSP is A—E—B—D—C—A
which has length 39, which is barely less than the reduced upper bound. This
is therefore a better method of obtaining solutions that are closer to the optimum.
However, it cannot be modelled algorithmically.

FINDING A LOWER BOUND

The following method gives a lower bound to the TSP solution, but does not necessarily find
the solution itself:

Step 1: Delete a vertex, together with all incident edges, from the original graph.

Step 2: Find the minimum spanning tree for the remaining graph.

Step 3: Add to the length of the minimum spanning tree the lengths of the two shortest
deleted edges.
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For example, consider the same graph as before,

C

shown opposite.
10
Suppose we delete vertex A and all its incident D

edges. We then find the two minimum spanning
trees for the remaining subgraph. They are shown
below. Both have length 25.

Now, we add the lengths of the two shortest deleted edges. In this case they have lengths 6
and 7. We therefore obtain the lower bound 25+ 647 = 38.
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Note that in this case it is not actually the solution to the TSP. It will only be the solution
to the TSP if there is a minimum length spanning tree with only two end vertices and if the
minimum lengths deleted are incident to these end vertices.

Notice also that if a different vertex is deleted, the lower bound will change. However, since
they are both valid lower bounds, we can take the largest one without fear that the solution
to the TSP is lower.





image9.png
EXERCISE 11B.8

1 a Find a minimum spanning tree for the graph P 55 Q
alongside based on K. Hence find an upper
bound for the TSP.
b Use a shorteut to find a better upper bound. 32 .
¢ By deleting each vertex in turn, find a set of
lower bounds. S
R
d Hence solve the TSP problem for this graph. 86
2 P 30 Q a Find two minimum spanning trees for the

graph alongside based on K.

b Using one of these, find an upper bound for
20 1s the TSP.

¢ By deleting each vertex in turn, find a set of
lower bounds.

Solve the TSP problem for this graph.
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Find a minimum spanning tree for the graph
alongside based on Kj5. Hence find an upper
bound for the TSP.

Use a shortcut to find a better upper bound.

By deleting the vertices in turn, find a set of
lower bounds.

Solve the TSP problem for this graph.
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EXERCISE 11B.8

1 a minimum spanning tree
has weight 130

= upper bound is 260.

56

b Shorteut SPQR then straight back to S.
Length is 130 + 86 = 216 = new upper bound is 216.
¢ DeletingS, min. spanning tree has length
55+43 =98
Adding the shortest deleted edges gives
98 +32 + 81 = 214
Deleting R, min. spanning tree has length

55 +32 =87
Adding the shortest deleted edges gives
87 +43 + 65 = 195

Deleting Q,  min. spanning tree has length

32+65 = 97
Adding the shortest deleted edges gives
97 +55 + 43 = 195

Deleting P, min. spanning tree has length
43 + 84 =127
Adding the shortest deleted edges gives
127 + 32 + 55 = 214
= lower bound is 214.
d  Shortest path SPQRS has length 216.
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Both minimum spanning trees have length 50
= upper bound is 100

b Shorteut QRSP then straight back to Q.
Length is 50 +30 = 80 = new upper bound is 80.

¢ Vertex MST Shortest Total
deleted | length | deleted edges
P 3 20 + 20 70
S 35 15+ 20 70
R 45 15+ 15 75
Q 35 15+ 25 75

= lower bound is 75.
d Shortest paths QRSPQ or QRPSQ have length 80.
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3 a R Q Minimum spanning tree

V has length 32
) > upper bound is 64.

" =

b Shortcut PQTSRQP.
Length is 32+ 10 +

=49 = new upper bound is 49.

¢ Vertex MST Shortest Total
deleted | length | deleted edges
P 25 T+8 10
Q 27 T+7 11
R 26 T+8 11
S 2 9+ 10 12
T 23 9+ 10 12

= lower bound is 42.
d  Shortest paths PQTSRP has length 43.
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B.8 THE TRAVELLING SALESMAN PROBLEM (TSP)

Recall that a Hamiltonian cycle is a cycle in which we visit each vertex of a connected graph
exactly once. One of the great unsolved problems of pure mathemics is how to efficiently
find the least weight Hamiltonian cycle of a weighted complete graph. This is known as the
Travelling Salesman Problem (TSP).

In graphs with a small number of vertices and edges such
as that alongside, it is possible to solve the TSP relatively
quickly. However, as the size and order of a graph increases,
the TSP rapidly becomes inefficient to solve even on a com-
puter. There are & (n — 1)! distinct Hamiltonian cycles on
K, so for large n we simply cannot test cach one.

Evaluate % (n —1)! for n =20 and n = 40 to sec why.

Imagine the number of cases for n = 100!!

There are two versions of the TSP, the classical version and the practical version.
In the classical TSP, we insist that cach vertex must be visited exactly once.

However, in the practical version, we allow vertices to be used on more than one occasion.
We therefore are not exactly finding the least weight Hamiltonian cycle of the graph, but
something very similar. The problem is still very complex and inaccessible to algorithmic
solution.
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If the original graph itself is not Hamiltonian, it can be transformed to be so, and extended
further to be a complete graph by adding extra edges. We are therefore able to transform the
practical version of the TSP into the classical version by the addition of edges, provided the
graph that is used obeys the triangle inequality. We will therefore only consider the classical
version in this text.

For example, consider the graph on the left below. We can transform it into the graph on the
right, thus converting it to the classical TSP.
A A

We can find all of the Hamiltonian cycles in the graph starting and finishing at A, and compare
their total weights. These are:

ABCDA: 35+ 38 +21 +12 = 106 ACDBA: 33+21 +23+ 35 =112

ABDCA +23+21+33 =112 ADBCA: 12+ 23 +38 + 106
ACBDA: 33 +38+23 +12 = 106 ADCBA: 12+ 21 + 38+ 35 = 106

Note that the three cycles on the right are simply those on the left in reverse order, so we can
discard them as non-unique. We can see that the minimum solution to the TSP is 106 in this
case, and the maximum is 112.
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[We now explore upper and lower bounds for what the minimum weight Hamiltonian cycle
might be; these give us an indication of whether a cycle is reasonably close to the mimimum
length and hence correct solution.

FINDING AN UPPER BOUND

Clearly, any solution to the problem is an upper bound for what the solution could be.
So, we could find any Hamiltonian cycle.

Twice the length of the minimum spanning tree is an upper bound to the practical TSP,
because it involves visiting each vertex then returning by the same path. It will thus serve as
an upper bound to the classical problem provided the triangle inequality holds for the graph.
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Examples:

1 In the example on the previous page, the minimum spanning tree is 56, so an upper
bound for the solution to the TSP is 112. Note that twice the length of the minimum
spanning tree must be greater than or equal to our largest solution, and in this rather
simple case it is equal. It is an efficient way of finding a maximum bound because
even if we cannot find the minimum spanning tree by inspection, we can use either
Prim or Kruskal.

2 We can use Prim or Kruskal to find the two mini- g 12
mum spanning trees for the weighted graph based
on K5 shown opposite.

The minimum spanning trees have length 28, so 1 10

the upper bound for the TSP is 56.
A\ /N b
7
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If we consider the minimum spanning tree on the
right, the walk EACAEDBDE starts and finishes
at the same point, and visits every vertex. Al-
though we cannot use this route in the classical
problem, it will still serve as an upper bound for
it.

A more appropriate upper bound would com-
plete a Hamiltonian cycle by simply adding the
edge BC to the minimum spanning tree. This
gives an upper bound of 28+12=40 to the
problem.

Therefore, although, this method of doubling the minimum spanning tree gives an
upper bound, it can be much greater than the optimum solution.





